国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Way developed to determine effectiveness of drug-delivery nanoparticles: study

Source: Xinhua| 2019-08-11 04:09:36|Editor: Mu Xuequan
Video PlayerClose

CHICAGO, Aug. 10 (Xinhua) -- Researchers at Northwestern University (NU) have developed a way to determine whether or not single drug-delivery nanoparticles will successfully hit their intended targets of cancer biomarkers by simply analyzing each nanoparticle's distinct movements in real time.

By studying drug-loaded gold nanostars on cancer cell membranes, the researchers found that nanostars designed to target cancer biomarkers transited over larger areas and rotated much faster than their non-targeting counterparts.

Even when surrounded by non-specifically adhered proteins, the targeting nanostars maintained their distinct, signature movements, which suggest that their targeting ability remains uninhibited.

The medical field has long been searching for alternatives to current cancer treatments, such as chemotherapy and radiation, which harm healthy tissues in addition to diseased cells. Although these are effective ways to treat cancer, they carry risks of painful or even dangerous side effects.

By delivering drugs directly into the diseased area, instead of blasting the whole body with treatment, targeted delivery systems result in fewer side effects than current treatment methods.

"The selective delivery of therapeutic agents to cancer tumors is a major goal in medicine to avoid side effects," said Teri Odom, a professor of chemistry at NU's Weinberg College of Arts and Sciences, who led the study. "Gold nanoparticles have emerged as promising drug-delivery vehicles that can be synthesized with designer characteristics for targeting cancer cells."

"Moving forward, this information can be used to compare how different nanoparticle characteristics, such as particle size, shape and surface chemistry, can improve the design of nanoparticles as targeting, drug-delivery agents," said Odom.

The study was published Friday in the journal ACS Nano.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105091382994931
主站蜘蛛池模板: 棋牌| 潮州市| 乾安县| 鹤庆县| 同德县| 剑川县| 新疆| 根河市| 天气| 五河县| 仙桃市| 泸定县| 峡江县| 沈丘县| 改则县| 五峰| 建瓯市| 万盛区| 怀集县| 吉木乃县| 鸡西市| 涿州市| 松桃| 西吉县| 西藏| 丽江市| 伊川县| 建阳市| 高台县| 和政县| 屯昌县| 湖州市| 门头沟区| 荣成市| 青浦区| 化州市| 论坛| 庆安县| 腾冲县| 大名县| 临猗县|