国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

 
AI beats leading human players in six-party poker, making milestone
                 Source: Xinhua | 2019-07-12 05:54:55 | Editor: huaxia

This is the interface used during the experiment with Pluribus and the professional players. Credit: Facebook

WASHINGTON, July 11 (Xinhua) -- An artificial intelligence (AI) program has defeated leading professionals in six-player Texas hold'em poker, making a superhuman AI milestone in a multi-party competition.

The study published online on Thursday in the journal Science showed that the AI called Pluribus developed by Carnegie Mellon University in collaboration with Facebook AI played against five poker professionals at a time for a total of 10,000 hands and emerged victorious with statistical significance.

All those human players are best players in the world who have won more than one million U.S. dollars playing poker, according to the study.

"The ability to beat five other players in such a complicated game opens up new opportunities to use AI to solve a wide variety of real-world problems," said Tuomas Sandholm, professor of computer science at Carnegie Mellon, who led the study.

Thus far, superhuman AI milestones in strategic reasoning have been limited to two-party competition like chess and Go. Poker is a bigger challenge than two-party ones because it is an incomplete information game. Player can't be certain which cards are in play and opponents can bluff.

AI in two-player games tends to approximate a Nash equilibrium, guaranteeing that only a result no worse than a tie, and AI emerges victorious once its opponent errs and cannot maintain the equilibrium. But in a game with more than two players, playing Nash equilibrium can be a losing strategy, so Pluribus has to consistently outplay its opponents.

Pluribus considers only five possible continuation strategies each opponent and itself might adopt for the rest of the game. It also learns to be unpredictable, by not always taking the best move each time, according to the study.

This milestone victory could bring AI closer to solving many real-world problems involving multiple parties and missing information.

Pluribus computed its blueprint strategy in eight days using only 12,400 core hours and used just 28 cores during live play.

Back to Top Close
Xinhuanet

AI beats leading human players in six-party poker, making milestone

Source: Xinhua 2019-07-12 05:54:55

This is the interface used during the experiment with Pluribus and the professional players. Credit: Facebook

WASHINGTON, July 11 (Xinhua) -- An artificial intelligence (AI) program has defeated leading professionals in six-player Texas hold'em poker, making a superhuman AI milestone in a multi-party competition.

The study published online on Thursday in the journal Science showed that the AI called Pluribus developed by Carnegie Mellon University in collaboration with Facebook AI played against five poker professionals at a time for a total of 10,000 hands and emerged victorious with statistical significance.

All those human players are best players in the world who have won more than one million U.S. dollars playing poker, according to the study.

"The ability to beat five other players in such a complicated game opens up new opportunities to use AI to solve a wide variety of real-world problems," said Tuomas Sandholm, professor of computer science at Carnegie Mellon, who led the study.

Thus far, superhuman AI milestones in strategic reasoning have been limited to two-party competition like chess and Go. Poker is a bigger challenge than two-party ones because it is an incomplete information game. Player can't be certain which cards are in play and opponents can bluff.

AI in two-player games tends to approximate a Nash equilibrium, guaranteeing that only a result no worse than a tie, and AI emerges victorious once its opponent errs and cannot maintain the equilibrium. But in a game with more than two players, playing Nash equilibrium can be a losing strategy, so Pluribus has to consistently outplay its opponents.

Pluribus considers only five possible continuation strategies each opponent and itself might adopt for the rest of the game. It also learns to be unpredictable, by not always taking the best move each time, according to the study.

This milestone victory could bring AI closer to solving many real-world problems involving multiple parties and missing information.

Pluribus computed its blueprint strategy in eight days using only 12,400 core hours and used just 28 cores during live play.

010020070750000000000000011100001382190531
主站蜘蛛池模板: 福贡县| 三门峡市| 桑日县| 兴安县| 临桂县| 崇信县| 云南省| 浦县| 息烽县| 汤原县| 德兴市| 华宁县| 修文县| 忻城县| 上饶市| 沐川县| 高青县| 吴桥县| 格尔木市| 广安市| 农安县| 新和县| 康保县| 罗江县| 永登县| 漯河市| 新巴尔虎右旗| 广东省| 凌云县| 从江县| 皋兰县| 定襄县| 望谟县| 增城市| 五莲县| 伊金霍洛旗| 武陟县| 湖州市| 贵南县| 宜春市| 桐城市|