国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

New system helps self-driving cars predict pedestrian movement

Source: Xinhua| 2019-02-13 08:25:31|Editor: WX
Video PlayerClose

CHICAGO, Feb. 12 (Xinhua) -- Researchers at the University of Michigan (UM) are teaching self-driving cars to recognize and predict pedestrian movements with greater precision by zeroing in on humans' gait, body symmetry and foot placement.

According to a news released posted on UM's website Tuesday, the researchers captured video snippets of humans in motion in data collected by vehicles through cameras, LiDAR and GPS, and recreated them in 3D computer simulation.

And based on this, they've created a "biomechanically inspired recurrent neural network" that catalogs human movements, with which they can predict poses and future locations for one or several pedestrians up to about 50 yards from the vehicle, about the scale of a city intersection.

The results have shown that this new system improves upon a driverless vehicle's capacity to recognize what's most likely to happen next.

"The median translation error of our prediction was approximately 10 cm after one second and less than 80 cm after six seconds. All other comparison methods were up to 7 meters off," said Matthew Johnson-Roberson, associate professor in UM's Department of Naval Architecture and Marine Engineering. "We're better at figuring out where a person is going to be."

To rein in the number of options for predicting the next movement, the researchers applied the physical constraints of the human body: human's inability to fly or fastest possible speed on foot.

"Now, we're training the system to recognize motion and making predictions of not just one single thing, whether it's a stop sign or not, but where that pedestrian's body will be at the next step and the next and the next," said Johnson-Roberson.

Prior work in the area typically looked only at still images. It wasn't really concerned with how people move in three dimensions, said Ram Vasudevan, UM assistant professor of mechanical engineering.

By utilizing video clips that run for several seconds, the UM system can study the first half of the snippet to make its predictions, and then verify the accuracy with the second half.

"We are open to diverse applications and exciting interdisciplinary collaboration opportunities, and we hope to create and contribute to a safer, healthier, and more efficient living environment," said UM research engineer Xiaoxiao Du.

The study has been published online in IEEE Robotics and Automation Letters, and will appear in a forthcoming print edition.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100901378174941
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
国产精品爱久久久久久久| 欧美噜噜久久久xxx| 性色av一区二区三区| 欧美亚洲综合久久| 久久一区二区三区国产精品| 欧美激情一区二区三区高清视频| 欧美日韩一区综合| 国产欧美日韩亚洲精品| 亚洲电影自拍| 一区二区三区视频免费在线观看| 亚洲欧美视频在线| 老司机久久99久久精品播放免费 | 日韩亚洲一区二区| 午夜视频久久久| 欧美不卡福利| 国产视频精品va久久久久久| 在线电影一区| 亚洲一级在线观看| 嫩模写真一区二区三区三州| 国产精品久久久久久户外露出| 黑人操亚洲美女惩罚| 亚洲视频香蕉人妖| 蜜桃av综合| 国产欧美日韩另类一区| 亚洲精品久久久久久久久| 欧美一区二区三区播放老司机| 欧美精品成人| 国产一区二区三区观看| 99综合在线| 久久字幕精品一区| 国产欧美日韩视频| 一区二区三区日韩欧美| 久久中文字幕一区| 国产精品日韩在线观看| 99re这里只有精品6| 蜜臀va亚洲va欧美va天堂| 国产日韩欧美日韩| 在线视频日韩| 欧美顶级大胆免费视频| 国产尤物精品| 亚洲欧美日韩一区二区三区在线观看| 欧美成熟视频| 国产主播一区二区| 午夜亚洲福利| 欧美午夜视频网站| 亚洲每日更新| 狼人社综合社区| 国产日韩一区二区三区| 亚洲午夜免费视频| 欧美日韩国产综合新一区| 在线观看不卡av| 欧美在线高清视频| 国产精品美女主播在线观看纯欲| 亚洲另类视频| 男人的天堂亚洲| 激情伊人五月天久久综合| 午夜精品久久一牛影视| 欧美午夜国产| 亚洲最新色图| 欧美精品在线网站| 亚洲欧洲久久| 欧美激情视频网站| 亚洲福利专区| 另类图片国产| 伊人精品在线| 久久久综合香蕉尹人综合网| 国产视频精品xxxx| 久久成人18免费观看| 国产欧美成人| 性欧美超级视频| 国产精品婷婷午夜在线观看| 亚洲在线观看免费| 国产精品色婷婷| 亚洲免费视频一区二区| 国产精品久久久亚洲一区| 中日韩午夜理伦电影免费| 欧美日韩成人一区二区| 亚洲免费观看高清在线观看 | 免费成人黄色av| 在线播放日韩| 久久频这里精品99香蕉| 在线播放视频一区| 久久综合中文色婷婷| 影音先锋亚洲精品| 久久久人人人| 亚洲国产精品ⅴa在线观看| 女人色偷偷aa久久天堂| 亚洲三级性片| 欧美日韩一区二区在线观看视频| 一区二区欧美日韩视频| 国产精品国产三级国产专播精品人| 亚洲在线中文字幕| 国产欧美日韩综合| 久久国产精品毛片| 在线免费日韩片| 欧美第一黄网免费网站| 日韩视频精品在线| 国产精品国产三级国产aⅴ无密码| 亚洲一级在线| 国产亚洲精品aa| 久久伊人亚洲| 亚洲乱码国产乱码精品精可以看| 欧美日韩中文在线| 欧美一级播放| 在线观看视频免费一区二区三区| 欧美成人69av| 亚洲五月六月| 国产综合视频在线观看| 欧美大片第1页| 亚洲午夜精品视频| 国产亚洲一二三区| 欧美成人午夜剧场免费观看| 一区二区不卡在线视频 午夜欧美不卡在 | 国产一区二区三区在线观看网站| 久久青草久久| 亚洲精品中文字幕在线| 国产精品日本| 久久婷婷av| 一区电影在线观看| 国产一区二区三区四区五区美女 | 一区二区三区av| 国产欧美日韩视频在线观看| 久久这里有精品视频| 99成人在线| 国产手机视频精品| 欧美激情亚洲一区| 性欧美xxxx大乳国产app| 亚洲黄页一区| 国产精品一级二级三级| 美女福利精品视频| 亚洲欧美视频在线| 91久久精品国产91性色tv| 国产精品毛片a∨一区二区三区| 久久久噜噜噜久噜久久| av不卡在线观看| 国内一区二区三区在线视频| 欧美日韩mp4| 久久免费高清| 亚洲一区二区黄色| 亚洲激情一区二区三区| 国产日韩精品一区观看| 欧美伦理在线观看| 久久免费黄色| 亚洲专区在线| 亚洲人成网站777色婷婷| 国产日韩欧美在线播放不卡| 欧美精品综合| 久久久噜噜噜久久狠狠50岁| 亚洲午夜久久久| 亚洲区一区二区三区| 国产一区导航| 欧美视频一区二| 免费在线亚洲| 欧美在线免费观看| 亚洲视频免费在线观看| 久久精品一区蜜桃臀影院| 日韩视频在线观看| 在线免费不卡视频| 国产日韩精品一区二区三区在线| 欧美日韩精品免费观看视频完整| 久久亚洲精选| 欧美在线视频免费观看| 亚洲永久在线| 日韩亚洲不卡在线| 尤物yw午夜国产精品视频明星| 国产精品视频一二三| 欧美日韩亚洲一区三区| 欧美+亚洲+精品+三区| 久久久青草青青国产亚洲免观| 亚洲永久免费| 一区二区三区 在线观看视频| 亚洲国产精品成人综合色在线婷婷 | 中国亚洲黄色| 亚洲人成在线观看| 亚洲国产精品视频| 影音先锋欧美精品| 国产在线观看91精品一区| 国产精品视频成人| 欧美少妇一区| 欧美日韩视频在线一区二区 | 午夜性色一区二区三区免费视频| 一区二区国产日产| 亚洲日本va午夜在线影院| 亚洲国产精品日韩| 在线视频国产日韩| 韩日精品在线| 国产一区二区电影在线观看 | 国产精品久久久久91| 欧美三级网址| 欧美日本精品| 欧美日韩国产麻豆| 欧美日韩1080p| 欧美日韩国产专区| 欧美日韩不卡| 欧美日韩国产三区| 欧美日韩1234| 欧美日韩成人一区二区三区| 欧美久色视频| 欧美日韩黄色大片| 欧美三级欧美一级| 欧美视频在线免费看| 欧美日韩专区| 国产精品久久久久久久久久三级 | 91久久精品国产91久久|