国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Stanford AI-powered research locates nearly all solar panels across U.S.

Source: Xinhua| 2018-12-21 07:31:01|Editor: Xiaoxia
Video PlayerClose

SAN FRANCISCO, Dec. 20 (Xinhua) -- Scientists from U.S. Stanford University can easily locate almost every solar panel installed across the United States by resorting to a deep-learning-powered tool that sorts more than 1 billion satellite images, a new study shows.

The Stanford scientists worked out a deep learning system called DeepSolar, which mapped about 1.7 million visible solar panels by analyzing more than 1 billion high-resolution satellite images with a machine learning algorithm and identified nearly every solar power installation in the contiguous 48 states.

The research team trained the machine learning DeepSolar program to find solar panel installations, whether they are large solar farms or individual rooftop facilities, by providing it with about 370,000 images, each covering about 100 feet (about 30.4 meters) by 100 feet.

DeepSolar learned to identify features of the solar panels such as color, texture and size without being taught by humans.

By using this new approach, the researchers were able to analyze the billion satellite images to find solar installations -- a workload that would have taken existing technology years to complete, but was done within one month with the help of DeepSolar.

"We can use recent advances in machine learning to know where all these assets are, which has been a huge question, and generate insights about where the grid is going and how we can help get it to a more beneficial place," said Ram Rajagopal, associate professor of civil and environmental engineering at Stanford.

The results of the research, which was published Wednesday in the science journal Joule, can help governments decide on renewable energy strategies, track the distribution of install solar panels or plan for optimal economic development in a given community.

"We are making this public so that others find solar deployment patterns, and build economic and behavioral models," said Arun Majumdar, a professor of mechanical engineering at Stanford who is also a co-supervisor of the project.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001376883991
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
午夜在线一区二区| 亚洲国内自拍| 国产视频不卡| 亚洲丁香婷深爱综合| 亚洲美女一区| 亚洲免费视频一区二区| 久久人人爽爽爽人久久久| 欧美va亚洲va香蕉在线| 欧美三级午夜理伦三级中视频| 国产午夜精品视频| 亚洲国产小视频在线观看| 亚洲午夜在线| 欧美 日韩 国产在线| 国产精品一级二级三级| 亚洲高清资源| 亚洲欧美综合网| 欧美国产日韩视频| 国产视频精品xxxx| aa级大片欧美三级| 久久男女视频| 国产精品美女久久福利网站| 亚洲国产乱码最新视频| 午夜亚洲性色福利视频| 欧美久久久久久| 狠狠色狠狠色综合日日tαg| 亚洲天堂激情| 免费视频久久| 国产欧美日韩亚洲| 夜夜嗨av一区二区三区网页| 久久天天躁夜夜躁狠狠躁2022| 欧美日韩亚洲一区三区 | 国产精品免费一区二区三区观看| **网站欧美大片在线观看| 亚洲欧美日韩精品| 欧美激情亚洲激情| 黄色工厂这里只有精品| 亚洲免费在线看| 欧美精品在线视频观看| 极品尤物久久久av免费看| 亚洲欧美综合国产精品一区| 欧美日韩国产首页| 亚洲高清一二三区| 久久久欧美精品| 国产美女诱惑一区二区| 一区二区三区视频在线看| 欧美电影免费观看高清| 在线成人小视频| 久久精品国产视频| 国产欧美日本在线| 亚洲综合成人在线| 欧美天堂在线观看| 日韩一级成人av| 欧美成人有码| 亚洲国产婷婷香蕉久久久久久| 久久久久久色| 国内一区二区三区在线视频| 久久久久久成人| 国产精品www网站| 夜夜嗨av一区二区三区网站四季av | 国产精品高清网站| 洋洋av久久久久久久一区| 欧美激情 亚洲a∨综合| 亚洲国产专区| 嫩模写真一区二区三区三州| 伊人影院久久| 老司机午夜精品视频| 伊人久久av导航| 久久天天躁狠狠躁夜夜爽蜜月| 国内外成人免费激情在线视频| 欧美伊人久久大香线蕉综合69| 可以看av的网站久久看| 国产综合一区二区| 久久精品亚洲| 激情成人在线视频| 理论片一区二区在线| 亚洲二区精品| 欧美成年人视频网站| 91久久久亚洲精品| 欧美韩日高清| 一区二区三区**美女毛片| 国产精品啊啊啊| 亚洲欧美网站| 国产欧美精品va在线观看| 久久超碰97人人做人人爱| 国模吧视频一区| 蜜臀久久99精品久久久画质超高清 | 亚洲欧美日本国产有色| 国产伦精品一区二区三区照片91| 午夜一区二区三区不卡视频| 国产一区导航| 玖玖玖国产精品| 亚洲精品视频中文字幕| 欧美视频在线免费| 亚洲欧美区自拍先锋| 国产亚洲午夜| 另类欧美日韩国产在线| 日韩一二三区视频| 国产精品色午夜在线观看| 久久成人免费日本黄色| 一色屋精品视频免费看| 欧美精品99| 亚洲一区自拍| 伊人成人在线视频| 欧美人牲a欧美精品| 亚洲欧美日韩国产一区二区| 国产一区二区三区电影在线观看| 裸体一区二区| 99re8这里有精品热视频免费 | 欧美欧美全黄| 午夜欧美大片免费观看| 有坂深雪在线一区| 欧美日韩精品在线| 欧美在线观看视频在线| 亚洲福利视频网站| 欧美体内谢she精2性欧美| 久久福利电影| 日韩亚洲欧美成人一区| 国产欧美日韩综合一区在线观看 | 欧美精品久久久久久久久久| 亚洲欧美经典视频| 亚洲成在人线av| 国产精品分类| 麻豆精品一区二区综合av| 一区二区三区日韩精品| 国产一级揄自揄精品视频| 欧美高潮视频| 性欧美xxxx大乳国产app| 亚洲黄页视频免费观看| 国产精品男女猛烈高潮激情| 免费欧美高清视频| 亚洲自拍电影| 最新国产乱人伦偷精品免费网站| 国产精品美腿一区在线看 | 国产一区二区三区在线观看免费视频| 欧美国产大片| 久久成人亚洲| 一区二区三区免费在线观看| 国产综合久久久久久| 欧美久久久久免费| 久久久成人精品| 亚洲永久精品大片| 亚洲日本电影| 国产曰批免费观看久久久| 欧美午夜激情视频| 美女日韩欧美| 午夜精品一区二区三区在线播放| 亚洲人成7777| 国外成人免费视频| 国产精品久久综合| 欧美久久电影| 麻豆国产精品777777在线| 午夜精品婷婷| 在线视频亚洲| 亚洲人成人99网站| 激情一区二区三区| 国产日韩欧美精品| 国产精品女人网站| 欧美日韩国产美| 免费人成网站在线观看欧美高清| 欧美影院在线播放| 亚洲一区二区三区免费在线观看| 亚洲欧洲综合另类| 伊人久久婷婷色综合98网| 国产欧美一区二区三区沐欲| 欧美性猛交xxxx免费看久久久| 欧美大片91| 狂野欧美激情性xxxx欧美| 久久丁香综合五月国产三级网站| 亚洲专区欧美专区| 一本大道久久a久久综合婷婷| 亚洲国产精品va| 在线播放日韩欧美| 国产一区二区三区在线观看精品| 国产精品一二三四| 国产精品久久久久久久久久久久久| 欧美激情bt| 欧美刺激性大交免费视频| 久热精品视频在线免费观看| 久久精品国产亚洲aⅴ| 午夜视频一区二区| 亚洲欧美日韩天堂| 亚洲影音先锋| 亚洲一二三区在线观看| 在线视频一区观看| aa日韩免费精品视频一| 日韩视频―中文字幕| 亚洲人成人一区二区在线观看| 亚洲国产精品第一区二区三区| 在线观看不卡av| 在线观看欧美日本| 一区视频在线看| 韩国三级在线一区| 精品va天堂亚洲国产| 一区二区三区在线看| 伊人久久综合| 亚洲国产福利在线| 亚洲人成网站色ww在线| 亚洲欧洲三级| 日韩午夜中文字幕| 亚洲视频一区在线观看| 亚洲女女女同性video| 欧美一级一区| 久久精品国产久精国产一老狼| 久久九九热re6这里有精品 |