国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Latest light beam technology eyes 100-times-faster internet speeds: Aussie researchers

Source: Xinhua| 2018-10-24 17:11:29|Editor: xuxin
Video PlayerClose

SYDNEY, Oct. 24 (Xinhua) -- Advanced technology harnessing unique features of light beams could carry more data and process it more quickly, pointing to internet speeds that are 100 times faster than what connections now allow, according to a latest Australian-linked research.

Current broadband fiber optics carry information on pulses of light but the way the light is encoded at one end and processed at the other affects data speeds. The advanced nanophotonic devices being developed by researchers can read a special form of "twisted" light and forms the missing key to unlocking super-fast, ultra-broadband communications, RMIT University researcher Haoran Ren said in a statement on Wednesday.

"Present-day optical communications are heading towards a 'capacity crunch' as they fail to keep up with the ever-increasing demands of Big Data," said Ren, who co-led the report of the findings.

"What we've managed to do is accurately transmit data via light at its highest capacity in a way that will allow us to massively increase our bandwidth."

Current state-of-the-art fiber-optic communications, like those used in Australia's National Broadband Network, tap a fraction of light's actual capacity by carrying data on the color spectrum.

New broadband technologies being developed use the oscillation or shape of light waves to encode data, increasing bandwidth by also making use of light aspects that cannot be easily detected, according to the university.

The latest devices help carry data on light waves that have been "twisted" into a "spiral" to further increase their capacity, it said.

The new technology, reported in scientific journal Nature Communications, can also be used to receive advanced quantum information, with applications for a wide range of cutting-edge communications and computing research, said the university's Professor Min Gu.

"Our nano-electronic device will unlock the full potential of twisted light for future optical and quantum communications," said Gu.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001375551741
主站蜘蛛池模板: 社旗县| 莒南县| 常德市| 南丹县| 贵溪市| 阳山县| 德阳市| 建湖县| 阜南县| 汾西县| 自治县| 安乡县| 静海县| 浠水县| 平顶山市| 石景山区| 广东省| 清水县| 台东市| 蚌埠市| 丘北县| 新源县| 赞皇县| 铁力市| 漳州市| 天镇县| 喀喇| 永仁县| 尼勒克县| 綦江县| 句容市| 肃北| 长泰县| 疏勒县| 罗江县| 铜川市| 临邑县| 南澳县| 蒙自县| 安多县| 齐齐哈尔市|