国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

U.S., Chinese scientists develop diatom-like nanostructures

Source: Xinhua| 2018-07-17 16:52:43|Editor: Xiang Bo
Video PlayerClose

LOS ANGELES, July 16 (Xinhua) -- Scientists from the United States and China have designed a range of diatom-like nanostructures, which may ultimately have far-reaching applications in new optical systems, semiconductor nanolithography, nano-electronics, nano-robotics and medical applications, including drug delivery.

Diatoms are tiny, unicellular creatures, inhabiting oceans, lakes, rivers, and soils. Through their respiration, they produce close to a quarter of the oxygen on earth, nearly as much as the world's tropical forests. In addition to their ecological success across the planet, they have a number of remarkable properties.

To achieve a range of diatom-like nanostructures, researchers borrowed techniques used by naturally-occurring diatoms to deposit layers of silica, the primary constituent in glass, in order to grow their intricate shells, according to a new research, published on Monday in the advanced online of the journal Nature.

Using a technique known as DNA origami, scientists from Arizona State University (ASU) led by professor Hao Yan, in collaboration with researchers from the Shanghai Institute of Applied Physics of the Chinese Academy of Sciences and Shanghai Jiaotong University led by professor Chunhai Fan, designed nano-scale platforms of various shapes to which particles of silica, drawn by an electrical charge, could stick.

The new research demonstrates that silica deposition can be effectively applied to synthetic, DNA-based architectures, improving their elasticity and durability.

"We demonstrated that the right chemistry can be developed to produce DNA-silica hybrid materials that faithfully replicate the complex geometric information of a wide range of different DNA origami scaffolds. Our findings established a general method for creating biomimetic silica nanostructures," Yan was quoted as saying in the university's press release.

The research opens a pathway for nature-inspired innovations in nanotechnology in which DNA architectures act as templates that may be coated with silica or perhaps other inorganic materials, including calcium phosphate, calcium carbonate, ferric oxide or other metal oxides, yielding unique properties, researchers say.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001373307821
主站蜘蛛池模板: 潞西市| 海丰县| 石棉县| 改则县| 台湾省| 阜南县| 漳浦县| 高密市| 青海省| 汪清县| 包头市| 牡丹江市| 那坡县| 新丰县| 丽水市| 濮阳县| 阿尔山市| 新巴尔虎左旗| 贵南县| 中方县| 永康市| 汤阴县| 南通市| 鹤山市| 汉中市| 比如县| 平果县| 泾源县| 高淳县| 阳曲县| 皮山县| 万山特区| 许昌县| 海盐县| 墨江| 金山区| 滁州市| 荆门市| 泉州市| 贵定县| 城口县|