国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

News Analysis: AI seen as driving force in Industry 4.0

Source: Xinhua| 2018-04-26 21:41:27|Editor: ZX
Video PlayerClose

by Zhang Jiawei

HANOVER, Germany, April 26 (Xinhua) -- Artificial Intelligence (AI) is no longer a vision for the future, as the technology has already been introduced to consumers in the form of virtual assistants in our smart phones, tablets, speakers and computers. But how does it fit into the Industry 4.0 concept?

During the ongoing Hanover Fair 2018, information technology (IT) companies and robotic equipment producers are keen to paint a picture of future factories where AI plays a key role in it.

Two branches of artificial intelligence -- machine learning and deep learning -- are seen as having the capability of building on the strength of big data to optimize processes, find new solutions, and gain new insights.

Especially for machine learning, it enables predictions to be made based on large amounts of data. This branch of artificial intelligence is built upon pattern recognition and has the ability to independently draw knowledge from experience. For this reason, the technology has found its place in industrial processes.

"Because AI enables to connect two machines. If I get the information from a machine then I am able to start to predict an outcome, I can start to predict maintenance, I can start to predict the quality of product, I can start even to predict logistics processes," Hans Thalbauer told Xinhua.

Thalbauer is the senior vice president in charge of Internet of Things and Digital Supply Chain at SAP, a German-based multinational software corporation.

"It is really going away from the reactive, alert-driven type of business," said Thalbauer.

At SAP's booth, the company showcased a bottling machine that can fill different bottles with different colored liquid instead of just one, which SAP developed with other equipment producers.

This is quite different from the conventional manufacturing process, which can only produce a certain type of product one at a time. The sensors on the machine collect and send the data to the computing platform, which can then analyze the process and tell the machines how to handle the individual bottles.

Nowadays, every single product on the production line can be individualized, and the cost can be at a level similar to mass production, said Thalbauer.

Another interesting approach from SAP is smart, automated assembly work stations. They understand which order has priority, if the required resources are available, how long the battery will last, and much more. Using this knowledge, they can independently decide whether it is more efficient to skip an assembly step first and then perform it later. This means assembly lines are no longer linear but flexible. This could mark the beginning of the end for the assembly line.

From small and medium-sized companies to large international corporations, every organization can accumulate data that it can make use of. With software, this data is consolidated and evaluated to make predictions. Machine learning recognizes characteristics and relationships and uses algorithms to make generalizations from them.

However, AI's benefit is yet to be fully recognized by companies in various sectors.

Artificial intelligence is supposed to keep Europe's energy suppliers competitive, but only 23 percent have an AI implementation strategy, according to a study by Roland Berger, a consulting firm headquartered in Munich.

Some 83 percent of the more than 50 interviewed companies in the sector realize that something has to change, and they assume that AI will play an important role in their future business. At the same time, 40 percent acknowledge that they have no use concept for the technology, the study shows.

The consultants recommend a gradual introduction -- utility companies should first use prepared applications to optimize existing systems -- and the funds saved could then be used by companies to develop new AI business models.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001371394121
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
国产精品日韩在线| 国内外成人在线| 国产欧美高清| 久久久久久国产精品一区| 亚洲欧美国产高清| 久久国产日本精品| 欧美电影在线| 国产精品美女久久| 国产综合网站| 麻豆免费精品视频| 欧美日韩喷水| 黄色一区二区在线| 一级日韩一区在线观看| 欧美在线二区| 国产丝袜一区二区| 亚洲国产成人av在线| 一区二区日韩| 久久久人成影片一区二区三区观看| 欧美成人免费网站| 国产精品一二三| 亚洲精品美女久久久久| 香蕉成人伊视频在线观看| 欧美va日韩va| 久久国产乱子精品免费女| 欧美一区二区观看视频| 最新日韩在线视频| 亚洲高清免费视频| 欧美成人伊人久久综合网| 欧美精品一区在线发布| 国产视频欧美视频| 日韩亚洲视频在线| 久久人人97超碰国产公开结果| 欧美精品免费在线| 国产一区二区三区高清播放| 日韩午夜视频在线观看| 久久久高清一区二区三区| 欧美午夜剧场| 亚洲精品乱码久久久久久| 久久国内精品自在自线400部| 欧美日韩另类字幕中文| 尤物在线观看一区| 欧美一区二区日韩| 欧美网站大全在线观看| 91久久精品一区二区别| 久久精品国产亚洲高清剧情介绍| 欧美日韩亚洲系列| 亚洲国产午夜| 久久野战av| 国产一区二区欧美| 午夜欧美精品久久久久久久| 欧美日韩激情小视频| 在线看日韩av| 欧美一区二区高清| 久久久精品国产免大香伊| 亚洲综合精品一区二区| 日韩图片一区| 狼人社综合社区| 国产日韩视频| 亚洲一区二区三区乱码aⅴ| 欧美激情 亚洲a∨综合| 久久久国产精品一区| 国产精品久久婷婷六月丁香| 日韩视频免费在线观看| 免费亚洲婷婷| 影音国产精品| 久久先锋资源| 一区二区三区在线视频免费观看| 欧美怡红院视频| 国产麻豆精品视频| 午夜久久tv| 国产精品一区二区在线观看网站 | 国产在线精品成人一区二区三区 | 激情成人av在线| 久久久久看片| 狠狠色丁香久久综合频道 | 国产麻豆日韩| 西瓜成人精品人成网站| 国产免费成人av| 欧美一级免费视频| 国产日韩欧美精品一区| 性色av香蕉一区二区| 国产日韩欧美一二三区| 久久se精品一区二区| 国产亚洲欧美日韩美女| 久久精品日韩一区二区三区| 激情婷婷欧美| 久久视频国产精品免费视频在线| 一区二区在线视频观看| 麻豆精品传媒视频| 亚洲黄色成人久久久| 欧美理论片在线观看| 99pao成人国产永久免费视频| 欧美日韩第一页| 亚洲天堂成人| 国产精品婷婷午夜在线观看| 欧美一区二区大片| 伊人伊人伊人久久| 欧美国产日韩一二三区| 在线一区二区三区四区五区| 国产精品久久久久久久免费软件| 午夜日韩福利| 激情婷婷久久| 欧美久久影院| 亚洲影院色在线观看免费| 国产人成一区二区三区影院| 久久午夜色播影院免费高清| 亚洲国产日韩一区| 欧美色综合天天久久综合精品| 午夜精品在线| 亚洲二区在线| 欧美亚男人的天堂| 久久精品亚洲精品国产欧美kt∨| 亚洲成人直播| 欧美三区美女| 欧美一区二区三区在线播放| 影音先锋中文字幕一区| 欧美日本中文字幕| 午夜久久黄色| 亚洲国产cao| 国产精品国产三级国产普通话三级| 久久av一区二区三区漫画| 亚洲国产精品第一区二区| 欧美日韩一级黄| 久久久国产精品一区二区三区| 亚洲电影免费观看高清完整版在线观看 | 国产老肥熟一区二区三区| 99国产精品99久久久久久| 国产精品久线观看视频| 久久久久久穴| 99国产精品久久久久老师| 国产伦理精品不卡| 欧美成年人视频网站| 亚洲综合日韩在线| 亚洲国产精品久久久久| 国产精品捆绑调教| 美女露胸一区二区三区| 亚洲一区中文字幕在线观看| 在线播放日韩专区| 国产精品久久久亚洲一区 | 欧美日韩国产系列| 久久精品夜色噜噜亚洲a∨| 99国产精品久久久久久久久久 | 好看的日韩av电影| 欧美午夜视频网站| 美女999久久久精品视频| 亚洲一区二区欧美日韩| 亚洲高清视频在线观看| 国产免费一区二区三区香蕉精| 欧美激情va永久在线播放| 欧美影片第一页| 999在线观看精品免费不卡网站| 国产一区二区成人| 欧美午夜片在线观看| 免费不卡在线观看| 久久激情五月激情| 亚洲一区久久| 欧美久久精品午夜青青大伊人| 欧美激情精品久久久六区热门| 久久精品成人一区二区三区蜜臀 | 国产麻豆精品在线观看| 欧美aa在线视频| 欧美一区二区三区播放老司机| 亚洲精品一区二区三区av| 国产一区二三区| 国产精品女主播| 欧美日韩p片| 欧美成ee人免费视频| 欧美在线啊v| 亚洲无线一线二线三线区别av| 亚洲国产99| 韩国av一区二区| 国产精品色婷婷| 欧美性做爰毛片| 久久国产精品电影| 亚洲午夜日本在线观看| 亚洲三级免费| 在线看日韩欧美| 黄色av一区| 国产一区视频在线观看免费| 国产精品日韩在线| 国产精品久久久久9999| 欧美日韩黄色大片| 欧美日本国产视频| 久久久之久亚州精品露出| 久久99在线观看| 久久国产主播| 久久久国产精品一区| 欧美在线在线| 午夜精品三级视频福利| 亚洲欧美精品suv| 亚洲欧美中日韩| 亚洲欧美视频在线| 亚洲免费视频网站| 亚洲欧美日韩精品| 亚洲欧美日韩另类| 亚洲欧美视频| 欧美一区二区三区四区高清| 性做久久久久久久久| 性娇小13――14欧美| 欧美淫片网站| 欧美在线一级va免费观看| 欧美一区二区三区视频免费播放| 午夜精品网站| 欧美资源在线观看|