"/>

国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线

Australian university uses algorithms to predict epileptic seizures
Source: Xinhua   2018-08-09 11:53:25

SYDNEY, Aug. 9 (Xinhua) -- An Australian-led study has adopted 10,000 crowdsourced algorithms to better predict epileptic seizures.

"The hope is to make seizures less like earthquakes, which can strike without warning, and more like hurricanes, where you have enough advance warning to seek safety," Dr. Levin Kuhlmann from the University of Melbourne's Graeme Clarke Institute and St. Vincent's Hospital said.

"Accurate seizure prediction will transform epilepsy management by offering early warnings to patients or triggering interventions."

Published on Thursday, the research began with a world-wide mathematical data science challenge in 2016.

Contestants were tasked with designing algorithms that could effectively distinguish between a pre-seizure and an inter-seizure.

With more than 646 participants and 478 teams, the most accurate algorithms were tested on patients with the lowest seizure prediction rates.

"Our evaluation revealed on average a 90-percent improvement in seizure prediction performance, compared to previous results," Kuhlmann said.

Effecting over 65 million people around the world, epilepsy can be "highly different" among individual sufferers.

"Results showed different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring," Kuhlmann said.

Encouraged by the positive findings, researchers have now developed an algorithm and data sharing website called Epilepsy Ecosystem, to encourage others to share their work and help build on the project.

"It's about bringing together the world's best data scientists and pooling the greatest algorithms to advance epilepsy research," Kuhlmann said.

"Our results highlight the benefit of crowdsourcing an army of algorithms that can be trained for each patient and the best algorithm chosen for prospective, real-time seizure prediction."

Editor: mym
Related News
Xinhuanet

Australian university uses algorithms to predict epileptic seizures

Source: Xinhua 2018-08-09 11:53:25
[Editor: huaxia]

SYDNEY, Aug. 9 (Xinhua) -- An Australian-led study has adopted 10,000 crowdsourced algorithms to better predict epileptic seizures.

"The hope is to make seizures less like earthquakes, which can strike without warning, and more like hurricanes, where you have enough advance warning to seek safety," Dr. Levin Kuhlmann from the University of Melbourne's Graeme Clarke Institute and St. Vincent's Hospital said.

"Accurate seizure prediction will transform epilepsy management by offering early warnings to patients or triggering interventions."

Published on Thursday, the research began with a world-wide mathematical data science challenge in 2016.

Contestants were tasked with designing algorithms that could effectively distinguish between a pre-seizure and an inter-seizure.

With more than 646 participants and 478 teams, the most accurate algorithms were tested on patients with the lowest seizure prediction rates.

"Our evaluation revealed on average a 90-percent improvement in seizure prediction performance, compared to previous results," Kuhlmann said.

Effecting over 65 million people around the world, epilepsy can be "highly different" among individual sufferers.

"Results showed different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring," Kuhlmann said.

Encouraged by the positive findings, researchers have now developed an algorithm and data sharing website called Epilepsy Ecosystem, to encourage others to share their work and help build on the project.

"It's about bringing together the world's best data scientists and pooling the greatest algorithms to advance epilepsy research," Kuhlmann said.

"Our results highlight the benefit of crowdsourcing an army of algorithms that can be trained for each patient and the best algorithm chosen for prospective, real-time seizure prediction."

[Editor: huaxia]
010020070750000000000000011100001373784431
国产精品99一区二区三_免费中文日韩_国产在线精品一区二区_日本成人手机在线
国外视频精品毛片| 国产精品美女久久久久久久| 久久五月婷婷丁香社区| 久久综合伊人77777蜜臀| 欧美不卡视频一区发布| 欧美日韩在线大尺度| 国产精自产拍久久久久久蜜| 黄色成人小视频| 亚洲美女av在线播放| 亚洲欧美日韩综合一区| 久久综合亚州| 欧美小视频在线观看| 国产一区二区中文| 亚洲精品乱码久久久久久黑人 | 久久av一区二区三区| 免费在线观看日韩欧美| 国产精品对白刺激久久久| 国产亚洲精品福利| 欧美激情性爽国产精品17p| 欧美日韩在线观看视频| 国内综合精品午夜久久资源| 一本一本久久a久久精品牛牛影视| 欧美永久精品| 欧美久久精品午夜青青大伊人| 国产欧美日韩免费看aⅴ视频| 亚洲精品欧洲| 久久精品夜色噜噜亚洲a∨ | 国产欧美视频一区二区三区| 激情成人综合网| 欧美在线免费播放| 亚洲开发第一视频在线播放| 国内精品美女在线观看| 欧美精品日韩精品| 国产香蕉97碰碰久久人人| 亚洲激情国产| 欧美一区二区三区四区在线 | 国产精品videossex久久发布| 精品白丝av| 亚洲欧美激情视频| 欧美日韩三级电影在线| 亚洲第一在线视频| 欧美一区在线视频| 国产精品初高中精品久久| 亚洲国产你懂的| 久久精品国产一区二区电影| 国产精品第一区| 日韩网站在线观看| 免费欧美在线视频| 激情久久久久| 欧美一区二区免费视频| 国产精品成人免费视频| 99精品免费| 欧美激情按摩| 亚洲国产精品成人精品| 久久嫩草精品久久久精品一| 国产日本欧美视频| 亚洲免费在线观看| 久久久久久久网站| 久久久午夜视频| 男男成人高潮片免费网站| 性欧美大战久久久久久久久| 亚洲精品偷拍| 亚洲欧美国产精品桃花| 男人的天堂成人在线| 在线一区视频| 久久久久久精| 激情久久影院| 久久婷婷久久一区二区三区| 一区二区久久久久| 亚洲国产成人精品视频| 国产女精品视频网站免费| 欧美日韩国产精品| 久久久久88色偷偷免费| 国产亚洲aⅴaaaaaa毛片| 国产精品网站在线观看| 亚洲国产精品久久久久久女王 | 黄色av日韩| 欧美在线播放一区| 国产日韩一区二区三区在线| 亚洲欧美日韩直播| 国产精品一区亚洲| 亚洲欧美成人网| 国产精品伦子伦免费视频| 亚洲综合999| 国产精品亚洲综合一区在线观看| 亚洲欧美精品suv| 国产精品人成在线观看免费| 亚洲一区欧美二区| 国产精品丝袜久久久久久app| 亚洲欧美日韩精品在线| 国产欧美日韩亚洲| 久久精品国产精品亚洲| 黄色精品网站| 免费在线日韩av| 99在线精品视频| 国产精品九九| 欧美影院午夜播放| 影音先锋日韩有码| 欧美高清在线视频| 中文高清一区| 国产深夜精品| 久久一区二区三区国产精品| 亚洲激情视频| 欧美日韩专区| 久久成人羞羞网站| 一区二区视频免费完整版观看| 女同一区二区| 这里只有视频精品| 国产欧美在线看| 牛牛精品成人免费视频| 夜夜嗨av一区二区三区中文字幕 | 国产日韩欧美亚洲一区| 亚洲激情网站| 国产伦精品一区二区三区视频黑人 | 日韩视频一区二区| 亚洲少妇一区| 国产欧美亚洲一区| 久久嫩草精品久久久精品| 亚洲国产天堂久久综合| 欧美日韩亚洲综合| 新67194成人永久网站| 在线成人激情视频| 欧美精品久久99| 亚洲欧美国产高清va在线播| 激情小说亚洲一区| 欧美美女福利视频| 香蕉久久国产| 亚洲国产日韩欧美综合久久| 欧美午夜一区二区| 久久久精品国产免大香伊| 日韩一级二级三级| 国产亚洲一区二区在线观看 | 久久高清国产| 亚洲毛片在线观看| 国产欧美日本一区二区三区| 欧美mv日韩mv国产网站| 亚洲一区国产一区| 亚洲高清在线精品| 国产精品嫩草影院av蜜臀| 久久综合图片| 亚洲欧美在线看| 亚洲精品国产精品久久清纯直播| 国产欧美一区二区三区另类精品| 欧美精品福利| 久久久精品一品道一区| 亚洲午夜精品久久久久久app| 好男人免费精品视频| 欧美日韩一区二区在线| 久久这里有精品视频| 亚洲欧美激情一区二区| 亚洲美女中文字幕| 极品中文字幕一区| 国产精品嫩草99av在线| 欧美激情精品久久久久久蜜臀| 欧美一区二区视频97| 在线午夜精品自拍| 亚洲激情网站免费观看| 国产综合视频在线观看| 国产精品久久久久久模特| 欧美二区在线| 久久久中精品2020中文| 午夜精品视频在线| 99视频精品在线| 在线播放豆国产99亚洲| 国产精品一区二区视频| 欧美日韩美女在线观看| 免费视频久久| 久久久久久久综合色一本| 亚洲伊人伊色伊影伊综合网| 亚洲精品中文字幕女同| 在线日韩av永久免费观看| 国产一区二区三区电影在线观看| 国产精品久久国产三级国电话系列 | 黄色国产精品| 国产欧美精品国产国产专区| 欧美视频一区二区三区…| 欧美搞黄网站| 免费精品视频| 久久影院午夜片一区| 久久国产精品黑丝| 午夜久久一区| 亚洲免费在线视频| 国产精品99久久久久久久vr| 亚洲精品视频免费| 最新国产成人av网站网址麻豆 | 国产一区二区三区久久 | 久久精品中文| 香蕉成人伊视频在线观看| 亚洲综合社区| 亚洲一区二区高清| 国产欧亚日韩视频| 国产女人aaa级久久久级| 国产精品久久毛片a| 国产精品美女黄网| 国产精品电影网站| 国产精品久久久久久久久 | 妖精视频成人观看www| 99xxxx成人网| 99国产精品久久久久久久| 99re6热在线精品视频播放速度| 日韩一二三区视频| 亚洲一二三区在线观看| 亚洲综合第一| 午夜国产精品视频|